On Asymptotically Optimal Meshes by Coordinate Transformation

نویسندگان

  • Guillermo D. Cañas
  • Steven J. Gortler
چکیده

We study the problem of constructing asymptotically optimal meshes with respect to the gradient error of a given input function. We provide simpler proofs of previously known results and show constructively that a closed-form solution exists for them. We show how the transformational method for obtaining meshes, as is, cannot produce asymptotically optimal meshes for general inputs. We also discuss possible variations of the problem definition that may allow for some forms of optimality to be proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Adaptive Mesh Generation in Two-Dimensions

This work considers the effectiveness of using anisotropic coordinate transformation in adaptive mesh generation. The anisotropic coordinate transformation is derived by interpreting the Hessian matrix of the data function as a metric tensor that measures the local approximation error. The Hessian matrix contains information about the local curvature of the surface and gives guidance in the asp...

متن کامل

Worm-Hole Gossiping on Meshes

Several algorithms for performing gossiping on one-and higher dimensional meshes are presented. As a routing model, we assume the practically important worm-hole routing. For one-dimensional arrays, we give a novel lower bound and an asymptotically optimal gossiping algorithm. For two-dimensional meshes, we present a simple algorithm composed of one-dimensional phases. For an important range of...

متن کامل

Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems

In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...

متن کامل

Optimal Oblivious Routing On D-Dimensional Meshes

In this work we consider deterministic oblivious k-k routing algorithms with buffer size O(k). Our main focus lie is the design of algorithms for dimensional n n meshes, d> 1. For these networks we present asymptotically optimal O(kpnd) step oblivious k-k routing algorithms for all k and d > 1.

متن کامل

Thermal Development for Ducts of Arbitrary Cross Sections by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional momentum and energy equations in laminar flow to obtain temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross sectional geometries. The conservation equations originally written in Cartesian coordinates are parabolized in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006